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Dynamical downscaling of General Circulation Model (GCM) data for any region has been made possible due to a set of physics
options and model dynamics within the Weather Research and Forecasting (WRF) model. %is study evaluated the performance
of an ensemble of physics options in simulating rainfall during wet and dry seasons of Lao PDR. %e model evaluation criteria
focused on identifying the optimum physics options for a range of scenarios. No single combination of physics options performed
well in all scenarios reflecting the importance of using different parameterizations according to the geographic location and the
intended application of the results. For the dry season, none of the ensemble members performed satisfactorily for the southern
region of Lao PDR, while all the ensemble members performed well for the northern and central regions. While almost all the
WRF simulations overestimated the rainfall during the wet season, BMJ for cumulus physics performed better in the northern and
central regions, and KF performed better in the south region.%e YSU scheme performed best as the planetary boundary layer for
both wet and dry seasons, while WSM5 for the wet season and Lin for the dry season gave the best model performance as the
microphysics option.

1. Introduction

%e Weather Research and Forecasting (WRF) model is a
mesoscale numerical weather prediction (NWP) and at-
mospheric simulation program created for both operational
weather forecasting and research requirements. %e span of
its applications ranges from real-time NWP to data as-
similation, parameterized physics research, regional climate
simulation (downscaling), air quality modelling, atmo-
sphere-ocean coupling, and idealized simulations [1]. %e
most widely used application of WRF among users globally
is in downscaling coarser resolution General Circulation
Model (GCM) outputs to finer resolution Regional Climate

Models (RCM). NWP models for downscaling GCM data
essentially involve calculating numerical solutions to the
hydrodynamic equations that govern the atmospheric mo-
tions through different numerical methods. However, all
these numerical methods involve some form of division of
the model extent into 3D cells, which determines the level of
detail and the computational load for the model host
computer. %is limits the ability of the differential equations
that depict the atmospheric motions to describe only pro-
cesses that occur in scales of more than twice the relevant
grid size. However, subgrid scale processes that take place in
the atmosphere such as cloud cover and microphysics di-
rectly affect the thermodynamic state of the atmosphere in
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larger spatial scales and need to be accounted for when
downscaling. %e technique that introduces these subgrid
scale processes explicitly in the form of their statistical effect
on the grid mean state is known as parameterization [2].

Selection of the best set of physics schemes for pa-
rameterization, which performs well, has become an in-
creasingly difficult task with the availability of more
schemes, which accounts for the various complex processes.
Since testing large multiphysics ensembles over seasonal
time scales is computationally intensive, many researchers
opt to investigate event-based simulations spanning a couple
of days or weeks to find out the optimal combination of
physics options, while there is some focus on seasonal
highlights in the form of the long-term mean [3]. In this
study, a compromise of these two approaches was used,
where an ensemble of 12 different combinations of pa-
rameterization schemes were tested for a period of one
month each (with 30 days + 3 days spin-up time) over 2
seasons for Lao PDR for 2 years (2017 and 2018).

%e response to various processes in the atmosphere may
change both spatially (with the geographic location) and
temporally (with the change in time and seasons), which
needs to be investigated in order to capture the real-world
observations through model simulations. Previous studies
have shown that the best interpretation of these subgrid scale
processes in different geographical constraints across time
has not been achieved by a single combination of physics
schemes resulting in underestimation and overestimation of
variables such as temperature and rainfall [3–5].

A study in northern Vietnam [6] using WRF to simulate
heavy rainfall events suggested the importance of microphysics
schemes in playing a major role in correct forecasting. %is
study involved an ensemble of microphysics, shortwave ra-
diation, and boundary layer options. Another study conducted
in %ailand [7] tried to capture dry conditions, tropical cy-
clones, andmonsoonal flow using reanalysis data. In this study,
the model was run for 2 weeks for dry season simulation in
March 1999. %e simulation was able to capture major spatial
precipitation patterns, although all the simulations over-
estimated the amount of precipitation.

Chotamonsak et al. [8] carried out a one-year simulation
in 2005 for %ailand with an ensemble of 8 members to
evaluate the WRF model performance during the rainy,
cool-dry, and hot-dry seasons. %eir model output com-
parison for rainfall with 69 observation station datasets
obtained correlation values of more than 0.8 for both the
cool-dry and rainy seasons, while very low correlation values
below 0.3 were observed for the hot-dry period.

According to the climate risk and adaptation reports
published by the World Bank Group and World Meteo-
rological Organization (WMO) [9], the baseline climate of
Lao PDR can be divided into two distinct seasons: a dry
season from mid-October to April and a rainy season from
May to September dominated by the southwest monsoon,
which brings a significant amount of precipitation to the
country. %ree climatic zones are recognized for Lao PDR:
the northern mountainous region above 1000m, the central
region, and the tropical lowland plains and floodplains in the
south [10].

In this study, both temporal (dry and wet seasons) and
geographical (northern, central, and southern) regions of
Lao PDR were assessed for each ensemble member per-
formance to determine themost suitable physics schemes for
each scenario. %e identification of the patterns and period
of seasonality (wet and dry seasons) for Lao PDR (not in-
cluded in this paper) was carried out using meteorological
station data for minimum temperature, maximum tem-
perature, and daily rainfall data, which were then tested
using statistical indicators (e.g., Autocorrelation Function
(ACF), Standardized Precipitation Index (SPI), and Fast
Fourier Transformation (FFT)). %e regions were derived
from the second level administrative boundaries of Lao PDR.

%e evaluation of the ensemble member results was done
using the meteorological station data records from 19 sta-
tions across Lao PDR maintained by the Department of
Meteorology and Hydrology (DMH) and the “Global Sat-
ellite Mapping of Precipitation” (GSMaP) data by the Japan
Aerospace Exploration Agency (JAXA) Global Rainfall
Watch which are produced and distributed by JAXA’s Earth
Observation Research Center. %e results were then statis-
tically evaluated using key indicators to obtain the best
performing combinations of physics options for different
scenarios.

2. Model Configuration

%eMaterials and Methods section should contain sufficient
details so that all procedures can be repeated. It may be
divided into headed subsections if several methods are
described %e physics ensemble was generated using the
Advanced Research WRF (ARW) version 4.0 hosted at the
National Center of Atmospheric Research (NCAR) along
with the Coordinated Regional Climate Downscaling Ex-
periment (CORDEX-WRF) version 1.3.

Each model simulation was a one-way nested run with
domain 1 encompassing the South-East Asian region around
Lao PDR with a resolution of 25 km grid size and domain 2
covering the whole of Lao PDRwith a resolution of 5 km grid
size (Figure 1).%e buffer length from domain 1 to domain 2
is about 525 km, which is 21 grids in the domain 1 scale from
all 4 sides. %e closest boundary of Lao PDR (southern tip of
Champassak province) to the domain 2 boundary is about
20 km apart which is 4 grids in the domain 2 scale to give
enough grid scale iterations to the model from the boundary
conditions.

%e driving data (boundary condition and initial con-
ditions) for the WRF model were derived from NCEP
GDAS/FNL (final) global analysis data which are on 0.25-
degree by 0.25-degree grids. %is dataset is derived from the
Global Data Assimilation System (GDAS), which collects
observational data from the Global Telecommunication
System (GTS) and produces them with a delay of about one
hour from NCEP Global Forecasting System (GFS) initia-
tion. %is delay allows more observational data to be in-
corporated during the initiation of FNL than in the GFS [11].

%e simulations were carried out separately for wet and
dry seasons with 33 days each (30 days + 3 days spin-up
time) in a year. %e wet season simulation spanned from 13
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July to 15 August and the dry season simulation spanned
from 13 December to 15 January for the years 2017 and 2018.

3. Ensemble Design

%e WRF model consists of several options for physics
schemes allowing the users to set up the model with optimal
performance for a range of temporal and spatial resolutions
to cater to climatologically different geographies. In this
study, three physics schemes, which proved to be most
influential in model performance derived from a literature
study of similar investigations in the region [4, 6–8], were
tested.%e schemes tested were the planetary boundary layer
(PBL) scheme, cumulus (CU) scheme, and the microphysics
(MP) scheme.

%e vertical thermodynamic and kinematic profiles of
the atmosphere represented in mesoscale models depend on
the correct representation of the turbulent mixing which
occurs in the lower troposphere. Since turbulence is a
subgrid scale process, the planetary boundary layer (PBL)
parameterization allows this effect to be accounted during
the simulations. %e main classification of PBL parame-
terization options can be drawn according to their order of
turbulence closure (integer and noninteger) and the depth
over which their effect can be introduced (local and non-
local). During this study, a first-order (integer) turbulent
closure, nonlocal influenced scheme (YSU) [12], and a 1.5-
order (noninteger) closure, local influenced scheme (MYJ)
[13], were used. %e YSU PBL scheme was used along with
the MM5 similarity theory surface layer [14, 15], while the
MYJ PBL scheme was used along with the Eta similarity
scheme [16].

Cumulus parameterization predicts the effect of subgrid
scale convection in the modelled atmosphere in terms of
other grid scale variables. In doing so, a cumulus

parameterization initially detects whether conventional rain
exists (satisfying the trigger function) by analyzing grid scale
variables and then introducing subsequent modifications to
the grid scale variables so that it accommodates the effects of
convection. Convection processes in general cover a range of
about 10 km and, therefore, models that have a horizontal
grid scale below 4 km are regarded as convection permitting
(convection resolving/allowing) models and do not require
an additional cumulus parameterization to resolve con-
vection. Models with 5 km or more grid size, however, re-
quire cumulus parameterizations to represent the effects of
deep convection [17] and therefore were used in this study.
%e main 2 types of cumulus parameterization schemes are
those with deep layer control (related to the generation of
Convective Available Potential Energy (CAPE) by large-
scale processes) and low level control (related to the con-
vection generated to counter the Convective Inhibition
(CIN)) schemes. In this study, a deep layer control type
cumulus parameterization (BMJ) [13] and a low level control
type cumulus parameterization (KF) [18] were used.

%e microphysics parameterization is one of the most
challenging tasks in parameterization for NWP models due
to the complexity introduced with the scale of the processes
involved and the heavy computation it demands. For these
reasons, bulk representation schemes of microphysics are
mostly dominant in NWPs over bin representative schemes
[19]. %e bulk representation of microphysics in general
involves the prediction of change to a specific moment
(1�mass, 2� number, and 3� radar reflectivity) of particle
size distribution to a set of defined classes of hydrometeors
(3 class, 5 class, 6 class, etc.) [20]. During this study, only
single moment representing microphysics schemes was
tested with 5 and 6 classes of hydrometeors (WSM5, WSM6,
and Purdue Lin) [21–23] to account for the relatively smaller
grid size.

%e short- and long-wave radiation parameterization
aims at calculating the radiative flux, where the resultant is
the sum of fluxes and vertical radiative flux density (RFD)
and thus determines the temperature tendencies of the
system. In this study, a combination of relatively simple
schemes was used (rapid and accurate radiative transfer
model (RRTM) for long wave and Dudhia for short wave)
[24, 25].

A total of 48 simulations were carried out in parallel for
the complete task accounting for 1584 days simulated with
different members of the physics ensemble (Table 1). %e
average time for one simulation using 32 cores was around
1.5 days (576 core hours).

4. Model Evaluation

4.1. Observation Data. Two independent sets of data were
used for the model evaluation: daily rainfall recorded in 19
meteorological stations maintained by the DMH and the
gridded satellite data from GSMaP project. %e meteoro-
logical station data for point locations were compared with
the closest WRF model grid center point (grid to point) for
19 stations in Lao PDR (Figure 2). %e WRF model gridded
data were also compared with GSMaP rain and gauge

Figure 1: Domain configuration of the WRF simulation.
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calibrated gridded data to assess the spatial accuracy of the
model outputs.

4.2. Evaluation Statistics. %e duration of wet and dry
seasons was identified by analyzing 6 years of historical
observation data, which agreed with the previous climate
studies carried out in Lao PDR [10]. %e wet season runs
fromMay to September, while the dry season covers October
to late April. %e averages of daily rainfall results for all 19
stations from each WRF ensemble member were compared
with the averages of daily observation records from DMH
stations. In addition, the three major zones in Lao PDR
(northern, central, and southern) were considered to eval-
uate the performance of the ensemble to varying dynamics
and in different geographical regions. %e following statis-
tical metrics were used in this study to assess the suitability

of the different physics schemes for a range of scenarios and
applications.

%e bias (equation (1)) was calculated by computing the
difference between the WRF simulated rainfall and the
observed rainfall for each day and the mean bias was derived
using the total days in the simulation period.

bias �
1
n



n

i�1
yi − xi( . (1)

Mean absolute error (MAE) (equation (2)) was calcu-
lated to quantify the difference between the ensemble
member result and the observation data while negating the
effect of cancelling positive and negative errors seen in the
bias.

MAE �
1
n



n

i�1
xi − yi


. (2)

Root mean square error/deviation (equation (3)) which
is a measure of the combination of systematic error and
random error was calculated for each ensemble member’s
results.

RMSE �

������������

1
n



n

i�1
yi − xi( 

2




. (3)

%e Pearson correlation coefficient (R) (equation (4))
was calculated to measure the linear dependence between
the WRF results and the observation data on a scale between
−1 and +1.%e value indicates the strength and direction of a
linear relationship between WRF output and the observa-
tion. A value of 1 implies that a perfect linear equation
describes the relationship between WRF and the observa-
tions, with all data points lying on a line for which the WRF
values increase as the data values increase. %e correlation is
−1 in the case of a decreasing linear relationship and the
values in between indicate the degree of linear relationship
between the WRF model and the observations.

R �
(1/n) 

n
i�1 xi − x(  yi − y( 

��������������������


n
i�1 xi − x( 

2
yi − y( 

2
 . (4)

Slope/linear regression (equation (5)) goes one step
beyond the correlation coefficient in identifying the linear
relationship between the WRF simulated rainfall values and
the DMH observed rainfall values. %is statistic was used to
derive the total model performance (TMP) which is
explained below.

slope �


n
i�1 xi − x(  yi − y( 

xi − x( 
2 . (5)

%e Index of Agreement (IoA) (equation (6)) which is a
dimensionless statistical measure of model performance [26]
was used to compare the WRF model output values pairwise
with observation values which were assumed to be reliable
and close to reality. %e values would range from 0 to 1 with

Table 1: Ensemble design.

Ensemble ID PBL CU MP sf_clay
A YSU KF WSM5 MM5
B YSU KF WSM6 MM5
C YSU KF Lin MM5
D YSU BMJ WSM6 MM5
E YSU BMJ WSM5 MM5
F YSU BMJ Lin MM5
G MYJ KF WSM5 Eta similarity
H MYJ KF WSM6 Eta similarity
I MYJ KF Lin Eta similarity
J MYJ BMJ WSM5 Eta similarity
K MYJ BMJ WSM6 Eta similarity
L MYJ BMJ Lin Eta similarity
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100°E 102°E 104°E 106°E 108°E 110°E

1 201 401 601 801 100112011401160118012001

Figure 2: %e terrain in meters above sea level of domain 2 and the
DMH observation data collection locations (red) in Lao PDR.
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values closer to 0 suggesting worst performance and the
upper bound value of 1 suggesting perfect performance.

IoA � 1 −


n
i�1 yi − xi( 

2


n
i�1 yi − x


 + xi − x


 

2. (6)

Total model performance [27] (equation (7)) which is a
combined index derived from MAE, RMSE, and slope was
used to quantify the overall performance so that each en-
semble member could be compared individually.

TMP �
MAE + RMSE

x
+(1 + R)  +

|1 + slope|
4

, (7)

where xi is the daily average observed rainfall data, yi is the
daily average rainfall data from WRF, x is the mean daily
average observed rainfall data, and y is the mean daily
average rainfall data from the WRF.

%e ability of the ensemble members to capture the
spatial extent of rainfall was tested using an indicator derived
from the Fractional Skill Score (FSS) method introduced by
Roberts and Lean [28]. %e original method proposed by
Roberts and Lean aimed at defining an optimal grid scale
resolution for capturing convective rainfall events using
NWP. However, during this study, the FSS method was
adjusted to determine the level of spatial accuracy for
capturing the spatial extent of rainfall for the model’s grid
scale resolution only. First, the accumulated rainfalls from
bothWRF (Iy) and GSMaP (Ix) were transformed into binary
fields using individual thresholds, where grids with accu-
mulated rainfall more than 10% of the maximum value were
set to 1 (equation (8)), while the rest were set to 0 (equation
(9)).

Ix �
1, xij ≥ 0.1max xij ,

0, xij < 0.1max xij ,

⎧⎪⎨

⎪⎩
(8)

Iy �
1, yij ≥ 0.1max yij ,

0, yij < 0.1max yij .

⎧⎪⎨

⎪⎩
(9)

Next, the mean square error (MSE) (equation (10)) was
calculated for each ensemble member.

MSEn �
1

NeNs



Ne

i�1


Ns

j�1
x(n)ij − y(n)ij 

2
, (10)

where Ne and Ns are the numbers of grids in the model
domain and n is the ensemble member ID given in Table 1.
%e FSS is defined as follows:

FSS(n) �
MSE(n) − MSE(n)ref

MSE(n)perfect − MSE(n)ref
� 1 −

MSE(n)

MSE(n)ref
,

(11)

where MSE (n) perfect� 0 is the MSE of a perfect model
output. In this study, the reference data derived from
GSMaP were used to calculate MSEref as follows:

MSE(n)ref �
1

NeNs



Ne

i�1


Ns

j�1
x
2
(n)ij + 

Ne

i�1


Ns

j�1
y
2
(n)ij

⎤⎦.⎡⎢⎢⎣ (12)

%e FSS value for the best performing member will be
closer to 1, while the worst performance will be closer to 0.

5. Results and Discussion

5.1. Temporal Analysis. %e daily average rainfall for the
whole of Lao PDR derived from the WRF model was val-
idated with the DMH observation data for both the wet and
dry seasons of 2017 and 2018.

%e ensemble member giving the least variation for wet
seasons was F, while E gave the least variation from DMH
observation for the dry season (marked in red in Figure 3).
While all the ensemble members overestimated the rainfall,
two distinct groups of observation were evident with low and
higher values of bias. %e simulations with the KF CU
physics option showcased higher values of rainfall for both
the wet and dry seasons. %e relaxation time of the BMJ
scheme, which has been largely calibrated with tropical
systems, produced less rainfall during the simulations and
therefore less bias compared to the KF scheme.%e nonlocal
closure scheme PBL option YSU, coupled with BMJ for CU
physics, demonstrated the least variation from observation
data (Figure 4). %e isolated rainfall events during the dry
season were also captured by all the ensemble members
except for one event on 9 January 2018, which recorded
rainfall of less than 10mm.

%e ensemble mean was able to capture the rainfall
closest to the DMH observations, which emphasizes the
value of the ensemble products rather than one single
configuration which either underestimates or overestimates
it (Figure 5). %eWRF interpretations of high rainfall events
using the KF scheme closely followed the DMH observation,
while the relatively low precipitation days were captured well
by the BMJ scheme suggesting the best use of cumulus
schemes depending on the application (event-based simu-
lations/long-term climate simulations).

5.2. Spatial Analysis. %e ability of the WRF ensemble to
correctly map the spatial extent of rainfall over the wet season
was assessed using the FSS of each member using the GSMaP
rain and gauge corrected gridded data as the reference. Both the
satellite rainfall data and the WRF downscaled rainfall showed
similar rainfall extents in the central region of Lao PDR, where
the terrain is relatively flat. However, the rainfall mapped by the
GSMaP in the southern Lao PDR for both years was better
captured by WRF model runs with the BMJ rather than the KF
cumulus scheme (Figure 6). In these regions, the sudden change
in relief in the form of the southwest facing slopes of the
Annamese mountain range near the %ailand border produces
high rainfall due to the orographical intensification of the
southwest monsoon [29]. However, the limitations of passive
satellite-based rainfall data to provide less accurate information
in complex terrains [30] should also be consideredwhen used as
a baseline for comparison.

Advances in Meteorology 5



70
60
50
40
30
20
10

0
13-Jul 21-Jul 25-Jul 29-Jul 01-Aug 05-Aug 09-Aug 13-Aug17-Jul

Ra
in

fa
ll 

(m
m

)

BMJ
DMH obs

E
F
KF

(a)

70
60
50
40
30
20
10

0
13-Jul 21-Jul 25-Jul 29-Jul 01-Aug 05-Aug 09-Aug 13-Aug17-Jul

Ra
in

fa
ll 

(m
m

)

BMJ
DMH obs

E
F
KF

(b)

0
13-Dec 21-Dec 25-Dec 29-Dec 01-Jan 05-Jan 09-Jan 13-Jan17-Dec

Ra
in

fa
ll 

(m
m

)

BMJ
DMH obs

E
F
KF

12

10

8

6

4

2

(c)

0
13-Dec 21-Dec 25-Dec 29-Dec 01-Jan 05-Jan 09-Jan 13-Jan17-Dec

Ra
in

fa
ll 

(m
m

)

BMJ
DMH obs

E
F
KF

25

20

15

10

5

(d)

Figure 3: Time series plots of daily average rainfall for Lao PDR, highlighting the CU physics option. Simulation with the KF scheme is given
in green and that with the BMJ scheme in blue. (a) Wet season 2017, (b) wet season 2018, (c) dry season 2017, and (d) dry season 2018.

6 Advances in Meteorology



70
60
50
40
30
20
10

0
13-Jul 21-Jul 25-Jul 29-Jul 01-Aug 05-Aug 09-Aug 13-Aug17-Jul

Ra
in

fa
ll 

(m
m

)

BMJ
DMH obs

E
F
KF

(a)

70
60
50
40
30
20
10

0
13-Jul 21-Jul 25-Jul 29-Jul 01-Aug 05-Aug 09-Aug 13-Aug17-Jul

Ra
in

fa
ll 

(m
m

)

BMJ
DMH obs

E
F
KF

(b)

0
13-Dec 21-Dec 25-Dec 29-Dec 01-Jan 05-Jan 09-Jan 13-Jan17-Dec

Ra
in

fa
ll 

(m
m

)

BMJ
DMH obs

E
F
KF

12

10

8

6

4

2

(c)

Ra
in

fa
ll 

(m
m

)

13-Dec 21-Dec 25-Dec 29-Dec 01-Jan 05-Jan 09-Jan 13-Jan17-Dec

BMJ
DMH obs

E
F
KF

25

20

15

10

5

0

(d)

Figure 4: Time series plots of daily average rainfall for Lao PDR, highlighting the PBL physics option. Simulation with YSU scheme is given
in green and that with the MYJ scheme in blue. (a) Wet season 2017, (b) wet season 2018, (c) dry season 2017, and (d) dry season 2018.
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Figure 5: Time series plots of rainfall in mm for ensemble range (grey), ensemble mean (red), and DMH observation (black). (a)Wet season
2017, (b) wet season 2018, (c) dry season 2017, and (d) dry season 2018.
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Figure 6: Continued.
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%e adjusted FSS score was able to highlight the ability of
each ensemble member to correctly map the extent of the
accumulated rainfall within a period of 1 month for the wet
season (Table 2). It was evident that the ensemble members
with the BMJ CU scheme were able to capture the greatest
number of grids, which received rainfall during the wet
season simulation compared to the members with the KF
CU scheme.

5.3. Zonal Analysis of Rainfall. %e daily average time series
data of rainfall from 7 stations in the northern, 7 stations in
the central, and 5 stations in the southern regions were
compared with WRF model results to identify the variation
of performance in different regions of Lao PDR (Table 3).
%e dry season did not show any significant variation among
ensemble members and DMH observation for all the
regions.

During the wet season, the performance of ensemble
members showed greater variation. For the northern and
central regions, the ensemble members that used BMJ
demonstrated lower RMSE and hence lower bias compared
to the members that used KF.%e southern region was better
captured by ensemble members that used the KF scheme and
produced greater correlation and lower RMSE compared to
members that used BMJ. %e southern region of Lao PDR
received the highest annual rainfall [31] dominated by the
southwest monsoon and the KF scheme performed best in
these conditions. No significant influence was observed with
the coupled PBL and MP physics schemes for different
regions of Lao PDR.

5.4. Sensitivity to Physical Parameterizations. %e sensitivity
of each physics option to induce errors in downscaling
results was analyzed by grouping all ensemble members
together with a common physics option and comparing their
respective range of bias using box and whisker plots (Fig-
ure 7).%e analysis was carried out at the country level using
the daily average rainfall results from theWRFmodel for the
19 station locations.

%e KF scheme when used as the CU physics option tends
to produce the highest bias compared to BMJ for both the wet
and dry seasons in Lao PDR. %e YSU scheme as the PBL
option produced relatively low levels of bias for the wet season
compared to MYJ and did not vary significantly during the
dry season. %e ensemble members with the WSM5 option
gave the least bias during the wet season and the highest bias
during the dry season. In contrast, the Lin option as the MP
parameterization produced the least bias during the dry
season and the highest bias during the wet season.

5.5. Identifying the Optimal Physics Scheme Combination.
During the wet season simulations, the ensemble members
F, E, and A performed best for the northern (Figure 8(a)),
central (Figure 8(c)), and southern regions (Figure 8(e)) of
Lao PDR, respectively, considering the correlation coeffi-
cient, standard deviation, and RMSE. When considering the
whole country, ensemble member E performed the best
(Figure 9(a)). During the dry season simulations, all the
ensemble members performed equally in general for
northern and central regions and the whole country with
correlation values of more than 0.7 and RMSE values of less

Rainfall accumulation in mm
High: 2958.77

Low: 0

(e)

Rainfall accumulation in mm
High: 4998.74

Low: 0

(f )

Figure 6: Rainfall accumulation for the wet season. (a) GSMaP 2017, (b) GSMaP 2018, (c) WRF ensemble E with BMJ 2017, (d) WRF
ensemble E with BMJ 2018, (e) 2017 WRF ensemble A with KF, and (f) 2018 WRF ensemble A with KF 2018.
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Table 2: FSS of ensemble members for the wet seasons in 2017 and 2018 (simulations with KF in green
and BMJ in blue).

A B C D E F G H I J K L

0.85 0.84 0.83 0.86 0.88 0.92 0.85 0.86 0.85 0.88 0.86 0.90
0.72 0.71 0.77 0.73 0.74 0.84 0.78 0.70 0.79 0.81 0.78 0.88

Ensemble ID

2017
2018

Table 3: Evaluation statistics for region-wise analysis.

Region Statistic Season A B C D E F G H I J K L

Dry 0.81 0.79 0.73 0.70 0.85 0.87 0.75 0.80 0.79 0.84 0.86 0.80

Wet 0.39 0.41 0.35 0.41 0.38 0.45 0.35 0.47 0.37 0.28 0.27 0.28

Dry 1.70 1.74 1.33 0.17 1.03 0.91 1.46 1.44 1.30 1.00 1.20 0.74

Wet 10.05 9.66 12.60 6.03 7.58 5.99 11.30 10.90 13.23 7.13 6.32 3.50

Dry 2.17 2.23 2.05 1.78 1.69 1.56 2.24 2.23 2.03 1.81 1.92 1.79

Wet 14.01 13.78 16.53 11.24 13.01 10.97 14.74 13.83 16.75 12.92 12.89 10.55

Dry 5.27 5.34 5.25 3.98 3.69 3.44 5.30 5.02 4.64 3.81 3.89 3.85

Wet 18.93 19.11 22.10 15.33 16.41 13.99 20.28 17.63 21.33 18.09 16.88 14.56

Dry 0.80 0.81 0.79 0.79 0.90 0.88 0.76 0.83 0.83 0.88 0.90 0.84

Wet 0.46 0.52 0.49 0.60 0.62 0.57 0.50 0.49 0.43 0.57 0.65 0.58

Dry 1.10 1.11 1.05 0.89 0.78 0.73 1.09 1.06 0.96 0.81 0.85 0.79

Wet 0.92 0.90 1.05 0.81 0.88 0.78 0.99 0.87 1.03 0.95 0.95 0.86

Dry 0.86 0.85 0.86 0.79 0.79 0.75 0.80 0.81 0.87 0.75 0.72 0.76

Wet 0.51 0.49 0.47 0.40 0.57 0.47 0.44 0.48 0.35 0.44 0.34 0.31

Dry 0.59 0.60 0.54 0.44 0.56 0.28 0.58 0.53 0.72 0.14 0.18 0.07
Wet 10.93 10.50 11.49 3.46 3.89 4.52 16.22 14.37 18.86 3.68 3.91 1.80

Dry 0.95 0.95 0.88 0.86 0.92 0.73 0.88 0.87 1.05 0.61 0.66 0.58

Wet 15.96 15.42 16.94 12.69 11.35 12.47 19.71 17.91 22.72 12.20 13.71 12.55

Dry 2.41 2.44 2.38 3.20 3.31 1.79 2.15 2.14 3.15 1.29 1.41 1.27

Wet 21.02 21.01 22.96 17.19 14.52 16.47 25.26 23.25 29.95 16.39 17.88 16.52

Dry 0.73 0.73 0.74 0.66 0.64 0.76 0.77 0.79 0.69 0.78 0.77 0.79

Wet 0.72 0.70 0.63 0.67 0.72 0.66 0.69 0.68 0.61 0.65 0.60 0.56

Dry 1.82 1.83 1.78 2.21 2.31 1.29 1.60 1.59 2.32 0.98 1.07 0.96

Wet 0.73 0.73 0.78 0.72 0.60 0.67 0.88 0.80 1.01 0.69 0.78 0.77

Dry 0.03 0.04 0.03 0.03 0.01 0.02 0.03 0.02 0.03 0.04 0.07 0.03

Wet 0.64 0.53 0.49 0.21 0.30 0.20 0.40 0.57 0.53 0.18 0.22 0.33

Dry –0.25 –0.24 –0.22 –0.39 –0.35 –0.32 –0.25 –0.32 –0.35 –0.31 –0.40 –0.32

Wet 10.38 6.99 10.68 –9.02 –9.20 –9.92 9.86 12.32 12.06 –6.06 –6.11 –6.38

Dry 1.25 1.26 1.24 1.15 1.20 1.20 1.24 1.17 1.16 1.23 1.02 1.24

Wet 20.36 20.55 22.07 21.66 20.63 21.03 23.04 22.40 22.33 19.30 20.66 19.51

Dry 3.70 4.14 3.55 3.32 3.32 3.37 3.74 3.50 3.49 3.47 3.24 3.49

Wet 26.01 27.77 30.33 32.75 31.49 32.24 31.00 28.45 28.82 31.42 31.19 30.37

Dry 0.18 0.17 0.18 0.18 0.16 0.16 0.13 0.12 0.15 0.17 0.18 0.17

Wet 0.74 0.70 0.70 0.42 0.48 0.41 0.61 0.69 0.63 0.42 0.42 0.44

Dry 1.88 2.00 1.84 1.75 1.77 1.78 1.89 1.80 1.80 1.81 1.68 1.82

Wet 0.59 0.66 0.72 0.87 0.82 0.87 0.78 0.67 0.69 0.86 0.85 0.79

MAE

Correlation

Bias

MAE

RMSE

MAE

RMSE

IoA

TMP

North

Center

South

RMSE

IoA

TMP

Correlation

Bias

IoA

TMP

Correlation

Bias

Yellow: simulations with KF, green: simulations with BMJ, dark blue: best performance, and dark red: worst performance.
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Figure 7: %e box plots of bias in mm for each parameterization with their relevant options used. WS�wet season; DS� dry season in
caption. (a) CU schemesWS, (b) PBL schemesWS, (c) MP schemesWS, (d) CU schemes DS, (e) PBL schemes DS, and (f) MP schemes DS.
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Figure 8: Continued.
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than 6mm (Figures 8(b), 8(d), and 9(b)). %e dry season
simulation for southern region demonstrated the worst
performance (Figure 8(f )); however, only 2 days received
more than 5mm of rainfall out of 66 days simulated in 2017

and 2018 suggesting the extreme dry climate in this region.
%e best correlation value obtained by WRF simulation for
the southern region in dry period was 0.07, while GSMaP
had a negative correlation of −0.03.
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Figure 8: Taylor diagrams with standard deviation, correlation coefficient, and RMSD for each ensemble member for the different regions of
Lao PDR. (a) Wet north, (b) dry north, (c) wet center, (d) dry center, (e) wet south, and (f) dry south.

Advances in Meteorology 13



6. Conclusion

%is study evaluated the performance of a WRF physics
ensemble in reproducing the rainfall region-wise in wet and
dry seasons of Lao PDR. %e ensemble consisted of 12
members with 2 cumulus physics schemes (BMJ and KF), 2
planetary boundary layer schemes (YSU and MYJ), and 3
microphysics schemes (WSM5, WSM6, and Lin) along with
Dudhia and RRTM as short-wave and long-wave radiation
schemes.

Several significant observations can be made in relation
to the variation of performance when analyzing each en-
semble member’s performance in both spatial and temporal
domains. However, as suggested by previous studies of WRF
parameterizations, no single combination of physics options
performed best in all cases for each of the evaluation criteria.
%e results from different evaluation statistics suggested the
best use of the physics option according to the intended
application (short-term extreme rainfall events/long-term
regular rainfall events) temporally and the focus of the study
(region-wise average study/country-scale average study) in
the spatial context.

During the wet season, while all the ensemble members
overestimated the rainfall in general, the BMJ scheme as the
CU physics option produced the least bias for regular long-
term rainfall periods, while the KF scheme was able to better
interpret the short-term extreme rainfall events. %e isolated
rainfall events in the dry season were also captured well by all
ensemble members with the BMJ scheme performing with
lower variation from observation than the KF scheme. %e
YSU PBL scheme was able to produce slightly better results
than the MYJ PBL scheme when coupled with BMJ for both
the wet and dry seasons in Lao PDR.%eWSM5microphysics

option was able to produce the least bias during the wet
season, revealing a clear preference during periods of regular
rainfall events and the opposite during the dry season, where
it demonstrated the highest bias. In contrast, the Lin mi-
crophysics option performed best during isolated rainfall
events in the dry season with the least bias and produced the
greatest bias during the wet season. In summary, the BMJ-
YSU-WSM5 (ensemble F) combination performed better
during the wet season and the BMJ-YSU-Lin (ensemble E)
combination performed better during the dry season. In
general, the BMJ scheme was also able to produce the spatial
extent of long-term rainfall accumulation slightly better than
KF, which is revealed by the adjusted FSS scores.

%e variation of region-wise evaluation statistics for
independent ensemble members suggests the clear differ-
ence of dynamics governing the atmospheric condition
within the country and the necessity of an ensemble to better
predict the climate variables by producing a range of values,
so that the reliability of the ensemble output is greater than a
single member simulation. %e most significant observation
in region-wise evaluation of model performance was the
behaviour of the southern region compared to the rest of the
country. While BMJ performed better than KF for the rest of
the country, the KF cumulus scheme performed best in the
southern region.

Since the decision on simulationmethod, resolution, and
time period depends on both resources and the intended
application of the model output, the results of this study can
provide the best possible parameterization schemes for
multiple scenarios of domain configurations and model run
periods.

Further extension of this study is ongoing with 3
components. First, the evaluation of different driving data
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Figure 9: Taylor diagrams with standard deviation, correlation coefficient, and RMSD for each ensemble member for the whole country of
Lao PDR. (a) Wet whole country; (b) dry whole country.
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for WRF such as ERA-interim and ERA5 reanalysis is being
carried out to better establish the suitability of the FNL or
otherwise in the regions of Lao PDR. %e second step in-
volves the use of optimum physics option combinations to
downscale 30-year historical climate data for Lao PDR and
to establish a bias correction for the region. %e third step
involves the downscaling of future climate scenarios with
different GCM data at 5 km resolution to be used as input for
the Agroecological Zonation (AEZ) of Lao PDR.

Data Availability
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tistics and model output data used in this study are available
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